

9

Example 18-1 Solution (4)

Calculation can be done using actual flow and height values of percentages. Use percentages in this case.

lesson18et438a.ppb

 $\begin{aligned} q_{1n} = 80\% & (0, \infty 8 \text{ m}^3/\text{s}) \qquad q_{0ul} = 60\% & (0, \infty 6 \text{ m}^3/\text{s}) \\ \hline T_{1n} = 7035 \\ \text{Place values in} \\ \text{this equation and} \qquad h(t_1) = \frac{1}{T_{1n}} \int_{t_0}^{t_1} (q_{1n} - q_{out}) dt + h(t_0) \\ \hline h(t_0) = \frac{1}{703} \int_{t_0}^{100} (80 - 60) dt + 22.5\% \end{aligned}$

		11
	lesson18et438a.pptx	
Step Response and Bode Plots of The Integral Process		
MatLAB Code	<pre>%close all previous figures and clear all variables close all; clear all; %input the integral time constant Ti=input('Enter the integral time constant: '); % construct and display the system sys=tf(1,[Ti 0]); sys %Plot the frequency response bode(sys); Grid on; %Construct a new figure and plot the time response figure; %define a range of time t=(0:15:Ti); %(start time, Stop time, final time) % use this range to generate a step response step(sys,t); Grid on;</pre>	

